注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

刘振中初中化学工作室

Clear Head + Clever Hands + Clean Habits

 
 
 

日志

 
 

2012年诺贝尔化学奖揭秘细胞表面“聪明”受体  

2012-10-14 21:33:43|  分类: 化学与科技 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
&

美国两科学家分享诺贝尔化学奖揭秘细胞表面“聪明”受体

历经44年的艰苦寻觅终于——

  ◆揭开人体细胞生理活动工作原理◆揭示了近半数药物的工作原理

  美国人罗伯特·J.莱夫科维茨和布赖恩·K.科比尔卡因为对蛋白受体的研究而获得2012年度诺贝尔化学奖。

2012年诺贝尔化学奖揭秘细胞表面“聪明”受体 - 点灯的心 - 刘振中初中化学工作室
 

  皇家科学院的新闻公报称,数十亿细胞在人体这个精密仪器里互相作用互相影响。每个细胞都有微小的受体使其能感知环境变化,从而不断适应新环境。而两位科学家对受体细胞中发挥重要作用的G蛋白偶联受体的工作原理的发现,具有开拓性意义。两位科学家的发现揭示了近半数药物的工作原理。以前,许多沿用已久的药物能有效治病,但人们知其然而不知其所以然。现在,制药公司才了解到,这些药物是通过作用于G蛋白偶联受体从而控制疾病的。利用这方面的知识,更多新药可以被发明来治疗各种疾病。据新华社、《中国日报》

  寻“受体”的历程竟是从1968年开始

  你的身体是由数以十亿计的细胞之间的相互反应形成了复杂统一体。每一个细胞都拥有一个微小的受体用于感知周遭的环境,以便可以让细胞得以适应新的情形。

  长期以来,有关细胞如何感知周遭环境一直是一个未解之谜。科学家们知道一些荷尔蒙,如肾上腺素拥有重大的影响:它可以提升血压,加快心率。因此他们怀疑在细胞的表面拥有某种对于这些荷尔蒙物质的受体。然而至于这些受体具体是由什么构成的,以及它们究竟如何工作仍然在整个20世纪的大部分时间里困扰着科学家们。

  1968年,罗伯特·J.莱夫科维茨开始使用放射方法追踪细胞的受体。他用碘同位素示踪不同的荷尔蒙,借助放射性研究技术的进步,他成功地锁定了几种不同的受体,其中就有肾上腺素的受体:β肾上腺素受体。他所领导的研究小组成功地将这一受体从细胞壁结构中提取出来,并初步了解了它的工作机理。

  在浩瀚的人体基因组中发现新目标

  科比尔卡20世纪80年代加入莱夫科维茨的研究小组,接受一项挑战,即在人类染色体基因组中确定为β肾上腺素受体“编码”的特定基因。

  在包含浩瀚信息的人体基因组中,科比尔卡以创新方式实现了这一目标。

  今天,这一整个系列的受体被统一称作“G蛋白偶联受体”。大约有1000组基因用于这些受体的表达,比如针对光线,针对气味,味道,肾上腺素,组胺,多巴胺以及血清素等等。今天大约有一半的药物都是通过G蛋白偶联受体发挥其药效的。

  莱夫科维茨和科比尔卡的工作对于我们理解G蛋白偶联受体如何发挥其作用至关重要。另外,在2011年,科比尔卡还达成了另外一项重要突破:他和他的小组拍摄到了β肾上腺素受体在被荷尔蒙激活并向细胞发送信号一瞬间的图像。这一图像标志着分子生物学历史上的一项杰作,是数十年来研究工作的结晶。

  本年度获奖成果显“跨界”性

  评审委员会说,现有所有药物中,大约半数借助G蛋白偶联受体发挥效用。

  2011年,科比尔卡实现一项新突破:他主持的研究小组捕捉到β肾上腺素受体的画面,恰逢它由某一种激素激化、向细胞发出“信号”的瞬间。评审委员会说,这一画面,集几十年研究成果为一体,是“分子层面的杰作”。

  与莱夫科维茨和科比尔卡的学历以及两人的研究历程吻合,本年度诺贝尔化学奖获奖成果似乎与诺贝尔生理学或医学奖有某种“渗透”,无法界定包含更多化学因素还是更多医学因素。

  现场回答新华社记者刘一楠提问时,一名评审委员说,本年度获奖成果确实涉及化学和医学,这种“跨界”现象构成科学“美感”。

2012年诺贝尔化学奖揭秘细胞表面“聪明”受体 - 点灯的心 - 刘振中初中化学工作室

  ●背景

  G蛋白偶联受体

  G蛋白偶联受体(GPCRs)构成一个巨大的分子系统,允许各种信号实现透过细胞膜,在细胞之间,或是在人体内的长距离传递。

  每个人体细胞都被一层细胞膜包裹,即所谓的“磷脂双层”。这种结构性质确保细胞得以保持其内部的特定生物化学环境,并阻止来自外界环境的其他不需要的物质的侵入。而为了确保这种机制能正常发挥作用,细胞内部的生物化学体系应当能够通过某种机制了解其周遭外部环境的信息。

  细胞外部环境中荷尔蒙水平的变化会引起细胞内部酶活动性的变化。气味分子会引起嗅上皮中细胞的活动,而食物中的物质则会引发味蕾中细胞化学活动的改变,而这些改变本身也会发送信号传达至人体的大脑。

  事实上,人体内的细胞每时每刻都在不断进行相互之间以及与外部环境之间的信息交换,这就需要一种分子体系和机制来实现跨越细胞膜两侧的信息传递。除此之外,在人体内部,信号的传递也可以在长距离上实现。为了达成快速反应,人的大脑也需要来自感觉器官的快速信号上传,包括视觉,味觉、嗅觉等等。

  这种分子体系便是由G蛋白偶联受体(GPCRs)构成的。它们是位于细胞膜上的蛋白质。它们会通过位于细胞膜内侧的GTP结合蛋白实现信号的传递。由于其拥有7个跨膜的多肽链,G蛋白偶联受体有时候也会被称作“7跨膜螺旋”(7TM)受体。它们可以负责多种生理信号的传递。这些信号可以是肽、荷尔蒙、脂类、神经传递素等物质浓度的变化,或者照射到眼睛的光线强度变化等等。G蛋白偶联受体会将这些信号传导至细胞内部,并以此激发一系列相应的反应,其中会牵涉到其他蛋白质、核苷酸和金属离子,最终它将传递出一个反应信息,并引起相应的细胞和生理反应。

  哺乳动物的很多生理活动都需要依赖7跨膜螺旋受体进行,这也是很多药物发生作用的关键部分。构成7跨膜螺旋受体的人体基因组大约有1000组,它们参与到对细胞外部各种环境刺激的感知过程之中。比如肾上腺素受体、多巴胺受体、组胺受体、光线受体视紫质以及很多类型的气味和味觉受体等等。

  评论这张
 
阅读(136)| 评论(0)
推荐

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017